Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 4.374 IF 4.374
  • IF 5-year<br/> value: 4.684 IF 5-year
  • SNIP value: 1.403 SNIP 1.403
  • IPP value: 4.288 IPP 4.288
  • SJR value: 3.247 SJR 3.247
  • h5-index value: 34 h5-index 34
TC cover
Jonathan L.
G. Hilmar
van den Broeke

The Cryosphere (TC) is an international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.

The main subject areas are ice sheets and glaciers, planetary ice bodies, permafrost, river and lake ice, seasonal snow cover, sea ice, remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.


TC now member of COPE

22 May 2015

The Cryosphere (TC) has become a member of the Committee on Publication Ethics (COPE) and thereby subscribes to the principles of COPE.

Website relaunch

11 Mar 2015

The TC website has been given a new look, and the navigation has been adjusted.
Further details:

TU Delft and Copernicus Publications cooperate in supporting open access

22 Jan 2015

In order to further promote open access, the TU Delft Library has transferred a budget to Copernicus to be used by its scientists in 2015.

Recent articles

Highlight articles

A glacier mass balance and redistribution model that integrates field observations and downscaled climate fields is developed to examine glacier sensitivity to future climate in the Everest region of Nepal.  The modelled sensitivity of glaciers to future climate change is high, and glacier mass loss is sustained through the 21st century for both middle- and high-emission scenarios.  Projected temperature increases will expose large glacier areas to melt and reduce snow accumulations.

J. M. Shea, W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya

We present a new glacier inventory for high-mountain Asia named “Glacier Area Mapping for Discharge from the Asian Mountains” (GAMDAM). Glacier outlines were delineated manually using 356 Landsat ETM+ scenes in 226 path-row sets from the period 1999–2003, in conjunction with a digital elevation model and high-resolution Google EarthTM imagery. Our GAMDAM Glacier Inventory includes 87,084 glaciers covering a total area of 91,263 ± 13,689 km2 throughout high-mountain Asia.

T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita

We present a new method to compute sea ice deformation fields from satellite-derived motion. The method particularly reduces the artificial noise that arises along discontinuities in the sea ice motion field. We estimate that this artificial noise may cause an overestimation of about 60% of sea ice opening and closing. The constant overestimation of the opening and closing could have led in previous studies to a large overestimation of freezing in leads, salt rejection and sea ice ridging.

S. Bouillon and P. Rampal

Ice discharge into the ocean from outlet glaciers is an important component of mass loss of the Greenland ice sheet. Here, we present a simple parameterization of ice discharge for coarse resolution ice sheet models, suitable for large ensembles or long-term palaeo simulations. This parameterization reproduces in a good approximation the present-day ice discharge compared with estimates, and the simulation of the present-day ice sheet elevation is considerably improved.

R. Calov, A. Robinson, M. Perrette, and A. Ganopolski

Existing methods (area-volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan-Karakoram glaciers. Resulting volumes range from 2955–4737 km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.

H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel

Publications Copernicus